Compiling Bayesian Networks Using Variable Elimination
نویسندگان
چکیده
Compiling Bayesian networks has proven an effective approach for inference that can utilize both global and local network structure. In this paper, we define a new method of compiling based on variable elimination (VE) and Algebraic Decision Diagrams (ADDs). The approach is important for the following reasons. First, it exploits local structure much more effectively than previous techniques based on VE. Second, the approach allows any of the many VE variants to compute answers to multiple queries simultaneously. Third, the approach makes a large body of research into more structured representations of factors relevant in many more circumstances than it has been previously. Finally, experimental results demonstrate that VE can exploit local structure as effectively as state–of–the–art algorithms based on conditioning on the networks considered, and can sometimes lead to much faster compilation times.
منابع مشابه
Generalizing Variable Elimination in Bayesian Networks
This paper describes a generalized version of the variable elimination algorithm for Bayesian networks. Variable elimination computes the marginal probability for some specified set of variables in a network. The algorithm consists of a single pass through a list of data structures called buckets. The generalization presented here adds a second pass to the algorithm and produces the marginal pr...
متن کاملBelief updating in Bayesian networks by using a criterion of minimum time
Variable elimination (VE) and clustering algorithms (CAs) are two widely used algorithms for exact inference in Bayesian networks. Both the problem of finding an optimal variable elimination ordering in VE and the problem of finding an optimal graph triangulation in CAs are NP-complete, although greedy algorithms work well in practice. Usually, VE selects the next variable to be eliminated such...
متن کاملOn Variable Elimination in Discrete Bayesian Network Inference
We are interested in proving that variable elimination (VE) in discrete Bayesian networks always yields a clearly structured conditional probability table (CPT) rather than a potential as universally stated. A Bayesian network consists of a directed acyclic graph and a corresponding set of CPTs. Based on the conditional independencies holding in the directed acyclic graph, the product of the CP...
متن کاملExploiting sparsity and sharing in probabilistic sensor data models
Probabilistic sensor models defined as dynamic Bayesian networks can possess an inherent sparsity that is not reflected in the structure of the network. Classical inference algorithms like variable elimination and junction tree propagation cannot exploit this sparsity. Also, they do not exploit the opportunities for sharing calculations among different time slices of the model. We show that, us...
متن کاملThe CPT Structure of Variable Elimination in Discrete Bayesian Networks
We show that a conditional probability table (CPT) is obtained after every multiplication and every marginalization step when eliminating variables from a discrete Bayesian network. The main advantage of our work is an improvement in presentation. The probability distributions constructed during variable elimination in Bayesian networks have always been denoted as potentials. Since CPTs are a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007